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human red blood cell

Components of cell membrane
(red blood cell)

Protein  49.2%
Lipid    43.6%
      Phospholipid  32.5%
      Cholesterol　11.1%
Carbohydrate 7.2%
      Glycoprotein　6.7%
      Glycolipid　0.5%

Cell



Soft MatterSoft Matter

Liquid Crystal Colloid SurfactantPolymer

・ Large Internal Degree of Freedom

・ Self-Assembly System



Colloids

Radius ~ µmP.N. Pusey, et al., Nature (1986)

Alder transition



Fluid Close Packed Crystal

Short-time 
diffusion

Long-time
diffusion

Static and Dynamic Structure of Colloids



Static Structure of Liquid Phase

Evaluation of Liquid (Disordered) Structure
The disordered structure is characterized by the radial distribution function, g(r),
which describes how the density varies as a function of the distance from a 
reference particle, or the probability of finding a particle at a distance of  away 
from a given reference particle.



! 

g(r)dr = "#2$ (r)dr
Definition of radial distribution function (isotropic system)

! 

" = N /V : Number density of particles

γ(r):correlation function for isotropic system

! 

"# (r)dr = 4$r 2% (r)dr

! 

"# (r) = drj$ #(rj )#(rj + r)
Autocorrelation function, Γ(r)



Ornstein-Zernike equation

Calculation of the correlation between two particles, 1 and 2.

! 

h(r12) = g(r12) "1Total correlation function :

! 

g(r) " 1 for r"#

h(r) " 0 for r"#

! 

h(r12) = c(r12) + " c(r13)# h(r23)dr3

The influence of molecule 1 on molecule 2 at a distance r can be split into
two contributions, a direct and indirect part. c(r12) is the direct correlation
function. The indirect part is due to the influence of molecule 1 on a third
molecule, labeled 3, which in turn affects molecule 2, directly and indirectly.
This indirect effect is weighted by the density and averaged over all the
possible positions of particle 3.



Percus-Yevick Approximation

! 

g(r) = e-w( r )/kBT w(r) s the average work needed to bring the two
particles from infinite separation to a distance r.

! 

c(r) = e-w( r )/kBT " e-[w( r )-u( r )]/kBT

total correlation indirect correlation
u(r) is the direct interaction potential

! 

y(r) = eu( r )/ kBT g(r )

! 

c(r) = g(r) " y(r) = e-u( r )/kBT y(r) " y(r) = f (r)y(r)

Substitute this equation in OZ equation

! 

y(r12) = 1+ " f (r13)y(r13)# h(r23)dr3



Hard spheres

! 

u(r) =
  "             r <# 
  0             r > #

$ 
% 
& 

u(r)

σ

r

! 

y(r) = 1 + " y(r ' )dr '
r '<#
$ % " y(r ' )y(| r % r ' |)dr '

r '<#
| r % r ' |>#

$

By solving this equation, we obtain direct correlation function for hard spheres

! 

c(x) =
"#1 " 6$sc# 2x " 1

2 $sc#1x
3           x < 1

                 0                              x > 1

% 
& 
' 

! 

x = r /"

! 

"sc = (# / 6)$% 3 : volume fraction

! 

"1 = (1 + 2#sc )
2 /(1 $ #sc )

4

! 

" 2 = #(1 + 1
2 $sc )

2 /(1 # $sc )
4

M.S. Wertheim, Phys. Rev. Lett. 10, 321 (1963).
J.-P. Hansen and I.R. McDonald, Theory of Simple Liquids, Academic Press, London, 1990



Estimation of theoretical prediction
Scattering
Optical path difference

! 

(r " s ' ) # (r " s0 ) = (r " s)

s0: unit vector describing incident beam direction
s’: unit vector describing scattered beam direction 

! 

s = s '"s 0

Phase difference 

! 

2"
#0

n(r $s) =
2"
#
(r $s) = (r $q)

λ0: wavelength of x-ray in vacuo
n: refractive index of x-ray

! 

q =
2"
#
s

! 

| q |= 2"
#
2sin$ = 4"sin$

#



Elastic scattering of electromagnetic radiation by a free electron:
Thomson scattering

Scattering amplitude 

! 

EP = Ee exp{i (q " r #$t)}

! 

Ee =
E0
R
( e2

4"#0mc
2 )(
1 + cos 2 $

2
)1/2

R: distance between scatterer and detector

! 

Et (q) = Ejj" = Ee exp(#i$t) exp{i (q % rj )}j"

Scattering from multi-electron system

! 

"(r) = # (r $ rj )j% : electron density distribution function

! 

Et (q) = Ee dr"(r) exp{i(q #r)}$ = EeF (q)

! 

| F (q) |2 = drk" drj" #(rk )#(rj ) exp{i (q $ rkj )}

! 

I (q) = Ie | F (q) |
2

Scattering Intensity

! 

rkj = rk " rj = r

! 

| F (q) |2 = dr" drj" #(rj )#(rj + r) exp{i(q $ r)} = dr%# (r)" exp{i(q $ r)}

! 

"# (r) = drj$ #(rj )#(rj + r) : autocorrelation function

: Wiener-Khinchin theorem

! 

F (q) = dr"(r) exp{i(q # r)}$



Form Factor and Structure Factor

! 

rk = RM + rmk! 

F (q) = dr" mk
M
# $(rmk ) exp{i (q % rmk )}exp{i (q % RM )}

       = FM exp
M
# {i(q % RM )}

Scattering Amplitude of multi-particle system

Ensemble average of scattering intensity

! 

< | F (q) |2 >= < | FJ |2 >J=1
N" + < FMFJ

* exp{i(q # RMJ" )} >"
M $J                                                                       

For monodisperse sphere system

! 

FM = Fj = F

! 

< | F (q) |2 >= NF 2 + F 2 < exp"" {i(q # RMJ )} >
M $J                                                     

               = NF 2[1 +
1
N

< exp%%"" {i(q # (R & R' ))}' (R & RM )' (R'&RJ )
M $J                                                                                                                       

dRdR'>]

               = NF 2[1 +
1
N

exp{&i (q # (R & R' ))}() (R, R' )dRdR']%%

               = NF 2[1 + ) exp{&i(q # R)}g(R)dR% ]

! 

RMJ = RM " RJ = R

! 

"(R) =< # (R $ RM ) >
M
%

! 

"# (R, R' ) =< $ (R % RM )&&
M 'J                          

$ (R'%RJ ) >

For isotropic system

! 

<| F (q) |2 >= NF 2[1+ " g(R)#
sin(qR)
qR

4$R 2dR] = NP(q)S(q)
P(q): form factor
S(q): structure factor



Form factor for a spherical particle with radius R0 and electron density ρ0

! 

F (q) = dr"(r) exp{i(q # r)}$

! 

F (q) = "(r) sin(qr)
qr

# 4$r 2dr = 4$"0
sin(qr)
qr0

R0

# r 2dr

       =
4$"0R0

3

u 3 t sint 
0

u
# dt = v"0% (u)

isotoropic system

! 

u = qr

! 

" (u) =
3
u 3 t sint dt

0

u

#

       =
3
u 3 [sinu $ u cos u]

v: volume of sphere

! 

P(q) = F 2 = v 2 ("0)
2[ 3
(qR0)

3 {sin(qR0) - qRcos(qR0)}]
2



Features of form factor for hard sphere

i)   Higher order peaks
ii)   I(q,R0)       v2

iii)  I(q,R0)       ρ0
2

iv)  u               Φ(u)           u-2,  I(q)        u-4 ~ q-4  (Porod law)
v)   u         0

! 

"

! 

"

! 

"#

! 

"

! 

"

! 

"

  

! 

sinu = u " 1
3!
u 3 +

1
5!
u 5 "!

  

! 

u cos u = u " 1
2!
u 3 +

1
4!
u 5 "!

  

! 

" (u) =
3
u 3 (sinu # u cos u) = 1# 1

10
u 2 +!

        = exp[# 1
10 u

2 ]

! 

I (q,R0) ~ I ev
2"0

2 exp[# 1
5 u

2 ] = I ev
2"0

2 exp[# R0
2

5 q
2 ]

Guinier’s law



The Fourier transform of OZ equation 

! 

dr1" dr2h(r12)e
iq #r12 = dr1" dr2c(r12)e

iq #r12 + $ dr1" dr2dr3c(r13)e
iq #r12h(r23)

! 

dr1" dr2h(r12)e
iq #r12 = h(q)

! 

h(q) =
c(q)

1 " #c(q)

OZ equation

! 

h(r12) = c(r12) + " c(r13)# h(r23)dr3

! 

S(q) = 1 + " 4#r 2$ g(r) sin qr
qr

dr

! 

h(r) = g(r) "1

! 

S(q) = 1 + (2" )3 #$ (q) + #h(q) = 1 + #h(q)

! 

S(q) =
1

1 " #c(q)

P.Y. approximation 0.2
0.4

0.5

! 

c(q" ) = #4$" 3 s 2 sin(sq" )
sq"

(%1 + 6&sc% 2s + 1
2 &sc%1s

3 ) ds
0

1

'

Structure factor

! 

S(q) = 1 + " 4#r 2$ g(r) sin qr
qr

dr



Elastic scattering from PMMA spheres with R=217 nm 



Dynamics of colloids
Diffusion of Particles

For the sake of simplicity, we consider one-dimensional diffusion
Flux of particles; j(x,t)

! 

j(x, t) = "D #$
#x

D: diffusion constant

Continuity equation

! 

"#
"t

= $
"j
"x

Diffusion equation

! 

"#
"t

= D "
2#
"x 2

Random motion of heterogeneous particles



Stokes-Einstein equation

External potential U creates a force on the particle  

! 

F = "#U /#x
The particle moves with velocity

! 

v = µF µ :mobility

Under the external force, the particles pile up (drift current) but will
be spread out due to the random diffusion (diffusion current).

! 

Jdr (x) = µF (x)"(x) = #"(x)µ $U
$r

   net flow of particles due to the drift current    net flow of particles due to the diffusion current

! 

Jdif (x) = "D #$
#r

! 

1
µ

= " : friction constant

At equilibrium

! 

0 = Jdr (x) + Jdif (x) = "#(x)µ $U
$x

"D $#
$x

Boltzmann distribution

! 

"(x)# exp($U (x) /kBT )



At equilibrium

! 

0 = Jdr (x) + Jdif (x) = "#(x)µ $U
$r

"D $#
$r

Boltzmann statistics

! 

"#(x)
"x

= $
1
kBT

"U
"x

#(x)

! 

"(x)# exp($U /kBT ) A: constant related to the number of particles

! 

0 = Jdr (r) + Jdif (r) = "#(x) $U
$r

µ "
D
kBT

% 

& 
' 

( 

) 
* 

! 

µ =
D
kBT

:Einstein relation

For the particle with the radius R0 and the solvent with viscosity η  

! 

µ =
1

6"#R0

! 

D =
kBT
6"#R0



Number density of particles at position r and time t :

Fluctuation of the number density :

! 

"#(r , t) = #(r , t)$ < # >

Fourier expression :

! 

"#(q, t) = dr"#(r , t) exp(iq $r)%

Dynamic structure factor

! 

S(q, t) =
1
N

"#($q,0)"#(q, t)

          =
1
N

exp[$iq % (ri (t) $ r j (0))]
i ,j
&

! 

"(r, t) = # (r $ r j (t))j%

Dynamical structure factor for hard sphere

RJ(t)

rk(t)

rjk(t)

! 

S(q, t) = N "1 <
J ,L
# exp["iq $ (RJ (t) " RL (0))] >

             < dr jk (t)%% dr jm (0) exp["iq $ (r jk (& ) " r jm (0))] >

motion of center of gravity internal mode

! 

| q " (rjk (0) # rjm ($ )) |<< 1

Dynamic structure factor



! 

S(q, t) = N "1 < exp{iq #[RJ (0) " RL (t)]} >
J ,L
$

Diffusion of hard spheres obeys the diffusion equation

The dynamic structure factor for hard spheres is expressed by

! 

"
"t
S(q, t) = #q2D(q, t)S(q, t)

D(q,t) : collective diffusion coefficient

Normalized dynamic structure factor :

! 

S(q, t) /S(q,0) = S(q, t) /S(q)
S(q): static structure factor

! 

"
"t

S(q, t)
S(q)

=
"
"t

1
NS(q)

exp iq # (RJ (0) $ RL (t)[ ]
i ,j
%

& 

' 
( 

) 

* 
+ 

               =
1

NS(q)
$iq # ˙ R J (0) exp iq # (RJ (0) $ RL (t)[ ]

i ,j
%

               =
1

NS(q)
$iq # ˙ R J (0) exp iq # (RJ (0) $ RL (0) + ˙ R L ( , t )d , t 0

t-{ }[ ]
i ,j
%

               . 1
NS(q)

$iq # ˙ R J (0) 1- iq # ˙ R L ( , t )d , t 0
t-{ } exp iq # (RJ (0) $ RL (0)[ ]

i ,j
%

               . 1
NS(q)

$iq # ˙ R J (0){ } 1- iq # ˙ R L ( , t )0
t-{ }d , t 0

t-
i ,j
% exp iq # (RJ (0) $ RL (0)[ ]



! 

"
"t

S(q, t)
S(q)

#
1

NS(q)
$iq % ˙ R J (0){ } 1- iq % ˙ R L ( & t )0

t'{ }d & t 0
t'

i ,j
( exp iq % (RJ (0) $ RL (0)[ ]

               =
1

NS(q)
$iq % ˙ R J (0){ }d & t 0

t' + $iq % ˙ R J (0){ } iq % ˙ R L ( & t )0
t'{ }d & t 0

t'[ ]
i ,j
( exp iq % (RJ (0) $ RL (0)[ ]

               =
1

NS(q)
$iq % ˙ R J (0){ }d & t 0

t' $ q % ˙ R J (0) ˙ R L ( & t )d & t 0
t' %q[ ]

i ,j
( exp iq % (RJ (0) $ RL (0)[ ]

Due to the isotropy of the system

! 

˙ R J (0) = vJ (0) = 0

! 

"
"t

S(q, t)
S(q)

# $
1

NS(q)
q % vJ (0)vL ( & t )d & t 0

t' %q
i ,j
( exp iq % (RJ (0) $ RL (0)[ ]

               = $
1

NS(q)
q %DJL (t) %q exp iq % (RJ (0) $ RL (0)[ ]

i ,j
(

! 

H (q, t) "
< q #DJ ,L (t) # q exp{iq #[rJ (0) $ rL (0)]} >

i ,j
%

ND0q
2

! 

Dij (t) = < vJ (0)vL ( " t ) > d " t 0
t#

Hydrodynamic function: 
Measure the influence of velocity of particle 1 on velocity of particle 2 via medium

D0: diffusion coefficient at infinite dilution



! 

"
"t
S(q, t)
S(q)

# $q2D0
H (q, t)
S(q)

Short time region

! 

"
"t
S(q,t) = #q2D(q,t)S(q,t)

! 

Ds(q,t)
D0

=
H(q,t)
S(q)



Measurement of dynamic structure factor by light scattering

! 

Ei (r, t ) = n i E0 exp{i(qi " r #$ i t )}

! 

" (r , t) = "0I +#" (r , t)

Incident light, ni: electric field vector, ωi: angular frequency 

The incident light is scattered by the heterogeneity 
of the dielectric constant. Fluctuation of the dielectric 
constant is expressed by

ε0:  mean dielectric constant, I : unit tensor

Scattered light, R: distance between scatterer and detector

! 

Es (R, t ) = "ns
qs

2E0

4#R$ 0

exp{i (qs R "% i t)} drV& exp{i(q ' r)}[n s ' ($ (r, t) ' n i ]

            = "ns
qs

2E0

4#R$ 0

exp{i (qs R "% i t)}($ is (q, t)

! 

"# is (q, t) = ns $ [ drV% exp{i (q $ r)}"# (r, t)] $ n i

Time correlation function of scattered light

! 

G (1) (" ) #< Es
* (R,0)Es (R," ) >

          =
qs

4 I 0

16$ 2R2%0
2 < &% is

* (q,0)&% is (q," ) > exp('i( i" )

! 

< Es
* (R, 0)Es (R," ) >= lim

T#$

1
T Es

* (R, t)Es (R, t + " )dt
%T /2
T /2
&



The fluctuation of dielectric constant, δε(r,t) is expressed by

! 

"# is (r , t) = $ j ,is (t)" (r % r j (t))j&

            = $ j ,is (t)'(j& r , t)

αi: polarizability of i molecule

! 

"# = #$ < # >

fluctuation of number density

! 

"#(q, t) = dr"#(r , t) exp(iq $r)%

Then the time correlation function G(1)(τ) is expressed by

! 

G (1) (" ) =
qs

4 I 0

16# 2R2$0
2 exp(%i& i" ) <' j ,is (0)'k ,is (" ) >< ()* (q,0)()(q," ) >

          =
qs

4 I 0

16# 2R2$0
2 exp(%i& i" ) <' j ,is (0)'k ,is (" ) > S(q," )

In a dynamical light scattering experiment, we observe the time correlation of the 
scattering intensity, 

! 

I s (t) =| Es (R, t) |
2

Thus, the forth order moment of scattered electric field, G(2)(τ).



! 

G (2 ) (" ) #< E* (0)E(0)E* (" )E(" ) >=< I (0) I (" ) >

           =< E* (0)E(0) >< E* (" )E(" ) > + < E* (0)E(" ) >< E* (" )E(0) >

           =|G (1) (0) |2 + |G (1) (" ) |2 =|G (1) (0) |2 (1+ | g(1) (" ) |2 )

! 

g(1) (" ) =G (1) (" ) /G (1) (0)
         = S(q, t) /S(q,0) : dynamical structure factor

Dynamical structure factor of spherical particles (PMMA)



Liquid Crystal (Rod-like Particle)

Phase Behavior of Rod-like particles (Simulations)



Nematic transition of rod-like particle (excluded volume effect)

Partition function of N spherical particles

  

! 

ZN (V ,T ) =
1
N!

1
h 3N dr1" ! drN" dp1" ! dpN" exp #$ 1

2mi=1
N% pi

2& 
' 
( 

) 
* 
+ 

+ u(ri ,j )
i< j
%

, 

- 
. 

/ 

0 
1 

               =
1
23N

1
N!

dr1" ! drN exp #$ u(ri ,j )
i< j
%

, 

- 
. 

/ 

0 
1 "

              =
2#3N

N!
QN (V ,T )

: de Broglie wavelength    (p2/m=kBT/2)

! 

" = h /(2#mkBT )
1/2

For ideal gas (u(ri,j)=0), the partition function is expressed by

! 

ZN
id (V ,T ) =

"#3N

N!
V N

The Helmholtz free energy is expressed by

! 

F id = "kBT lnZ = "kBT ln(V N#"3N /N!)

     = NkBT ln$#3 "1( )

! 

" = N /V

! 

lnN!= n lnN " N



For real gas with the inter-particle interaction, u(i,j)

Mayer function

! 

" (i, j) = exp(#u(i, j) /kBT ) #1

! 

r"#

! 

exp("u(i, j) /kBT )# 1

! 

" (i, j)# 0

Then we can calculate the partition function

  

! 

QN = ! exp "u(i, j) /kBT[ ]
i< j
#$$  d 3r1!d 3rN

     = ! 1+% (i, j)( )
i< j
#$$  d 3r1!d 3rN

     = ! (1+ % (i, j) +!)
i ,j
&$$  d 3r1!d 3rN

Helmholtz free energy

  

! 

F = F id "
kBT
2V

N
V

# (1,2)dr1$$ dr2 +!

   = F id + B2kBT% +!

Cluster expansion 

B2: second virial coefficient

measure of hard core potential and attractive interaction! 

B2 = "
1

2V
# (1, 2) dr1$$ dr2 = "

%1

2



For rod-like particle, we have to take into account orientation of the rod.

Orientation distribution function:  f(Ω)    Ω : solid angle

! 

f (" )d" = 1#The orientation distribution function should be normalized by

for isotropic system

! 

fiso (" ) =
1
4#

Contribution of the orientation distribution on the free energy is expressed by  

! 

"T#Sori = "NkBT f ($ ) ln[4%f ($ )] d$&

In addition, we have to average the virial coefficient over the orientation

! 

B2 = " 1
2 #1$$ (% ,% ' ) f (% ) f (% ' ) d% d% '

Here we assume that the rod particle has a hard potential

! 

u = "     # = $1 for overlapping particles

! 

u = 0      " = 0 for non-overlapping particles

! 

"1(# ,# ' ) =
1
V

$ dr1%%  dr2 = (&1) dr12
overlap
% = &vexcl (# ,# ' )

! 

vexcl (" ," ' ) ~ 2DL
2 | sin# |



Free energy of rod-like particles

  

! 

F
NkBT

= F id + f (" ) ln[4#f (" )] d"$

                 +% DL2 | sin& |$$ f (" ) f (" ' ) d" d" '+!

For dilute system, the system is governed by the orientation entropy

For concentrated system, the system is governed by the packing entropy

The isotropic-nematic transition is determined by the competition between
the orientation entropy and the packing entropy.

A trial function for orientation distribution function

! 

ftrial (" ) =
# cosh(# cos" )

4$ sinh#

n

θ

n: director
u: direction of the rod
α is a parameter to be determined from the condition 
that minimizes F.

α=0 corresponds to the isotropic state.
α=     corresponds to the completely ordered state.

! 

"



Free energy ΔF(α, ρ) =F(α, ρ) -F(0, ρ) 
as a function of order parameter α 
at various density ρ.

! 

"1* =
13.36
#DL2

! 

"2* =
17.94
#DL2

For ρ < ρ1
∗ 

ΔF has only one minimum at α=0.
isotropic state

For  ρ1
∗ < ρ  <ρ2

∗

ΔF has has another minimum at  positive α,.
nematic state, thus coexistence region.

For  ρ2
∗ < ρ

ΔF has only one minimum at positive α=0.
nematic state



Experimental confirmation of Onsager theory

RNA
Protein

15 nm

300 nm

tobacco mosaic virus 
(TMV)

S. Fraden, et al., Phys. Rev. Lett. 63, 2068 (1989).



Polymer

AFM image of 
Polystyrene-b-polymethylmethacrylate

Ideal chain (Random walk chain)

End to end vector ~ diameter of chain

! 

R = rn
n=1

N
"

! 

R = 0

! 

R2 = rn "rm
m=1

N
#

n=1

N
#

for random walk chain

! 

rn "rm = rn rm = 0

! 

n " m

! 

R2 = rn
2

n=1

N
" = Nb2

b: bond length, N :degree of polymerization

 Rn

r1

 R



P(R,N): probability distribution function that the end-to-end vector of the chain is R.

z : number of nearest neighbor sites

! 

P(R,N ) =
1
z

P(R " bi ,N "1)
i=1

z
#

for N >> 1, |R|>>|bi|

! 

P(R " bi ,N "1) = P(R,N ) " #P
#N

"
#P
#R$

bi ,$ +
1
2

# 2P
#R$#R%

bi ,$bi ,%

bi,α , Rα : α component of bi , R 

! 

1
z

bi"
i=1

z
# = 0

! 

1
z

bi"
i=1

z
# bi$ =

%"$b
2

3

! 

"P
"N

=
b2

6
" 2P
"R2

By solving this equation under the boundary condition, R=0 at N=0.

! 

P(R,N ) =
3

2"Nb2
# 

$ 
% 

& 

' 
( 
3/ 2

exp ) 3R2

2Nb2
# 

$ 
% 

& 
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Gauss distribution



! 

R = (Rn " Rn"1)
i=1

N
#
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Probability distribution for {Rn}=(R0, R1,...,RN)

Comparing this distribution function with the canonical distribution of 
a harmonic spring, 

! 

P Rn{ }( )" exp #U Rn{ }( ) /kBT( )

! 

U Rn{ }( ) =
1
2
k Rn " Rn"1( )
i=1

N
#

2

! 

k =
3kBT
b2

Bead-spring model

The polymer chain can be modeled by a sequence of segments connected 
by the harmonic spring. 



The Hamiltonian of the bead-spring model of an ideal chain
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H 0 Rn{ }( ) =
3kBT
2b2

Rn " Rn"1( )
n=1

N
#
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The partition function of the ideal chain
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Z0 = dR1" ! dRN" exp #H 0 Rn{ }( )[ ]

    = V 2$b2
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The free energy F0(R) of an ideal chain whose end-to-end vector is fixed at R
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F0 (R) = "TS0

         = "kBT ln
Number of possible conformations

given the end - to - end distance
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        = "kBT ln
Number of possible conformations

of an ideal chain without constraints
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 Excluded volume chain

Ideal chain: two segments can occupy the same lattice site.
Excluded volume chain　 (Self-avoiding chain) : 
　　　two segment cannot occupy the same lattice site. 

Here we consider an excluded volume chain with N segments 
and the one end is fixed at the origin.

The number of the excluded volume chain which has the end-to-end distance 
between R and R+dR is W(R)dR.

The number of the ideal chain which has the end-to-end
distance between R and R+dR is W0(R)dR

The total number of the ideal chain is zN. 

! 

W0 (R)dR = z NP(R,N )4"R 2dR

               = z N 4"R 2 3
2"Nb2
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   In the case of the excluded volume chain, some conformations are removed from the
ideal chain conformations due to the excluded volume condition.

   Probability of the excluded volume chain conformations in the ideal chain conformations
is expressed by p(R).

   We assume that the polymer segments are distributed in the volume R3 homogeneously.
The lattice volume is vc.  The number of lattice sites in the volume R3 is R3/vc.

   The probability that one segment does not overlap with the another segment is (1-vc/R3)
and the number of segment pairs is N(N-1)/2.   Then
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p(R) = 1" vc
R3
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3 N >>1
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The size of polymer chain can be estimated by optimization of W(R).

For the ideal chain, W0,

! 

R0
* = 2Nb2 / 3( )

1/ 2
"N1/ 2

For the excluded volume chain, W,
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"
3R*2

2Nb2
+
3N 2vc
4R*3

+1= 0

By logarithmic differentiation, we obtain
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Effect of solvent

An excluded volume chain on lattice
● : polymer segment
○ : solvent molecule  
All sites are occupied by polymer 
segments or solvent molecules.

The size of polymer chain is strongly affected by 
the interaction between polymer segment and solvent.

Good solvent dissolves chains well, whereas
bad solvent cannot dissolve chains.

Model of polymer chain in solvent

Interactions

polymer segment - polymer segment :    -εpp
polymer segment - solvent  :                   -εps
solvent - solvent  :                                   -εss

Note, εpp, εps, εss > 0

At polymer conformation i,
   number of  segment - segment pairs :
   number of  segment - solvent  pairs :
   number of  solvent - solvent pairs :

! 

N pp
( i)

! 

N ps
( i)

! 

N ss
( i)



Total energy of the system is expressed by 

! 

Ei = "N pp
( i)# pp " N ps

( i)# ps " Nss
( i)#ss

In this case, the probability finding the polymer chain with the size of R is

! 

P(R)"W (R) exp # E (R)
kBT
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! 

E (R) :  mean energy of polymer chain with
size R.

Probability that a lattice site is occupied by the polymer segment is φ=Nvc/R3.

Then, the numbers of pairs are expressed by

! 

N pp
( i) "

1
2
Nz#

! 

N ps
( i) " Nz(1#$)
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Nss
( i) " Nss

0 #
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: total number of solvent pairs for system without chain 
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Nss
0

! 

E (R) " # 1
2
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Then
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